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MATHEMATICAL FORMULATION OF BODIES OF REVOLUTION

by

L. Landweber and M. Gertler

ABSTPACT

Various methods of defining bodies of revolution are considered with the con-
clusion that the most satisfactory method is one which defines the sectional-area curve
by means of a polynomial The polynomial form possesses certain advantages in easc
of computation and ready application to hydrocynamlcal problems, such as the. computa-
tion of theoretically derived pressure distributions.

The degree of the polynomial fixes t.- rumber of parameters that may be pre-
scribed to determine a form. In order to generate the sixth-degree polynomial forms
the dimensionless parameters chosen are the nose and tall radii, r° and r1, the pris-
matic coefficient, Cp, and the position of the maximum section at x - m. It is shown

that the polynomial expression for the sectional-area curve is a linear combination of
ro, r,, and Cp, with polynimials of the sixth degree as coefficient4. Formulas and
tables for these polynomial coefficients are provided, so that when ro, rl, Cp, and m
are given, the offsets of a form may be rapidly computed.

Not all combinations of these parameters give practical or desirable forms.

r. range of seable forms may be limited by imposing the restrictions that the

..ectional-area curve have no maximum or mlnimum other than at x = m, or ti.a. the
body hzve no Inflect~on "mint:s. These criteria are formulated mathematically and a

method of computing boundary curves delineating permissible ranges of parameters is

developed.

Formulas for geneTating seventh-degree polynomial forms are also derived and
applied to compare sixth- and seventh-degree forms with the same values of r r1 , Cp,
and m. It is found that practical seventh-degree forms with the same values of those

parameters may differ appreciably from the sixth-degree form, Thus these parameters
do not suffice to fix a form, a!though they serve to develop the entire class of sixth-

degree polynomial forms.

Bodies of revolution with useful application derived from polynomials not of the
sixth degree may be fitted (by the method of least squares) very closely by means of
sixth-degree forms. From this point of view the usefulness of a series of sixth-degree

polynomial forms is greatly enhanced.

4 1
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INTRODUCTION

When the David Taylor Model Basin became Interested in making stud-

ies of the hydrodynamical behavior of streamline bodies of revolution, it was

decided that such work could be most satisfactorily accomplisheo with families

of bodies of revolution for which certain parameters could be systematically

varied. Accordingly, prior to the testing, a program to establish a procedure

for the development of such families was initiated. -
It was determined that the best approach would be to define these

families by a general mathematical equation. The main advantages of the use "

of a mathematical expression over the empirical or "fairing by eye" method
are: The geometry of the body can be precisely defined, fairness between

given offsets is assured, and the geometrical parameters can be directly and

accurately varied.

A search of the literature reveals that various methods for obtain-

Ing mathematical deflaition of forms have been tried but generally only for

application to single forms rather than to families of forms. Among these

have been continations of known analytical curves such as an ellipse with a
parabola, an ellipse with a hyperbola, etc., 1 ' 2 polynomials of various de-

grees, 3
o
4 and trigonometric series.

The polynomial metriod was selected ts the basis for the development

described herein since it appeared to have distinct advantages in ease of han-
dling and furthermore because of its ready application to hydrodynamical prob-

lems such as computations of theoretically derived pressure distributions.

It provides a simple method for evaluating the constants In the general equa-

tion once a given set of parameters has been selected, and supplies data for

readily computing the offsets of a wide variety of forms.

THE GEOMEtRIC PARAVETERS "

Of the various geometric properties that may be employed to char-

acterize the shape of an elongated body of revolution, it has been convenient
to choose, for practical reasons, the following primary quantities to define

the body:

l'is the length. I-
d ih the maxim diameter.

Xm is the distance of the maximum section from the nose.

Ro is the radius of curvature at the nose.

.Referances are listed on page 64. . '

____ ____ ____ ____ ____

__. . ... . . . . . . .._"_. . . . .. . . . . ...___. .. .._"
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Ri Is the radius of curvature at the tall. -

V is the volume.

Other characteristics, such as the surface area, the position of the center of

gravity, the radii of gyration, etc.. are of Interest for variods purposes.

These are considered as derived quantities in the present report, and are In- .

cluded In Appendix 5.
It Is convenient to employ the following dimensionless combinations

of the primary geometric quantities:

HI R11A. m ro- r -21

and the prismatic coefficient Cp

The question as to how well the foregoing parameters define the "

shape of a body is discussed in a subsequent section.

CHOICE OF MATHEMATICAL FORM "

For both mathematical and physical reasons the development has been

based on the secticnal-area curve of a form, rather than a meridian section h
of the form itself. Thus It will be shown that the slopes of the sectional-

area curve at the ends of a body are proportional to the radii of curvature .

at the ends, a relation which greatly simplifies the determination of the k
equation for a body. The physical reason is that the sectional-area curve is

proportional to an axial doublet distribution which, to a good approximation,

generates the desired body in a uniform stream.5 Consequently it is desirable

to have simple mathematical expressions for the sectional-area curve of a body

for the purpose of computing the potential-flow field about it, and Its pres-

sure distribution. .1
.The question remains as to the most convenient mathematical form in

which the equation of a sectional-area curve zan be expressed. Let us con- I
sider for a moment the converse of the present problem; i.e., the determina-

.tion of the geometrical chartcteristics of a given body, rather than the de- .

.,velopment of an equation for a body of given characteristics. The geometrical

characterlstics can be computed directly from the equation for a body. To ob- I
-.tain its equation, a given body may be curve-fitted with any complete set of

orthogonal functions, each of which can give a "best" fit in the leant-square

sense! Practically, however, It is convenient to employ, for tnis purpose,

either the trigonometric ftmctions or Legendre polynonials. The former fit

the equation of given form by means of a finite number of terms of the Fourier

May|'
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expansion; the latter by means of a polynomial. In either case It I.s possible, I

for the direct problem, to solve for the coefficients bf the expansion for a 
-S

body of prescribed geometrical characteristics by means of sets of linear -

equations. This is illustrated for the polynomial in the following section.

The direct application of the method of linear equations is tedious, 
however. '.

and another method-in which the equation of the sectional-area curve is given 
.4

directly as a linear combination of tabulated functions-is developed. Aswill be shown, the determination of the latter functions Is simplified 
in the ., .

case of the polynomial form because of the property that its zero. appear as

:actors. Furthermore, the polynomial form appears to be more suitable for the

purpose of computing pressure distributions. Because of its advantages, the

polynomial representation is used in the succeeding developments. " -

EQUATIONS FOR POLYNOMIAL COEFFICIENTS r V

The equation of a meridian section of a body of revolution will now L

be expressed in terms of rectangular coo.7dinates (X,Y) with the X-axis taken ':

along the axis of the body and the origin at one end (the nose) of the body. . t.
Assuming a polynomial for the equation of the secticnal-area curve, then . *!

jry - A X + A2 X
2

4 ..•+ [1] + A Xi

It will be convenient to operate with this equation in dimensionless

form. For this purpose put x = X/1, y - Y/d. Then Equation [1] may be writ-

ten a

+ax + . + anxn [2]

whe.,e

- 3 -as  A .- , s a,2, ... n [3]

Sketches of a sectional-area curve in dimensional and dimensionless forms are

shown in Figu.es I and 2.

The coefficients a,, a2 . . . . are to be determined in ter-s of pre-

scribed values of the geometrical parameters m, ror 1  and Cp In the dimen-

sionless form the length and maximum diameter are unity so that X is elimi-

nated as a parameter. The length and diameter conditions are then that y a 0 .

when x a 1, y when x -, and d 0 when x m. These respectively give

the equations: 2

__*- 

,~i

- . . . .. . --- - -- -**-** . . -"
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al + a2 + al + + a- 0 4[1]a

aim + am2 + ... a [51-

e+ +2am + ... + namn' -0 [61

The radius of curvature R may be evaluated from the formula
•*. -"

2 /2dFX [ -dX-Y / ' ,

which may be written in the dimensionless form

LI +-L 2 -.S3/2-d
2  1 "d2 ( dy'i"', .

d e" Qydy2 I
But differer.tiating Equation [2] successively with respect to y gives

n-I dx -2y (ai + 2a 4....+ )- [81- +

and
*2 (al + 2a,x 4 + ranxn-1) e + 2a2 + ... + n(n-I)anxf2] ()[9"

n ddy / .y

If a, 3 0, t is seen from Equation r8) that when x = 0, dy= 0,

and hence, from Equation [9], that d 2 X . 2 Consequently, substituting these "" 7.

values Into Equation [7], we obtaind?

I" . ,1

iala 2r, [001

If, on the other hand, a, 0, the body k'as a pointed nose and ro  0 0. gence j.
Equation [101 is valid for both cases. dx .'• dxSimilarly when x - 1, y - 0 and from Equation [8] L - 0, unless .

al + 2a2 + .. + nan - [,"

Hence Equations [7] and [9] give .

ax + 2a 2 ... + na n  -2r, [12

:;. *I-.



'The positive sign Is taken in [101 and the negative In [12] because r0 and r1
are taken intrinsically positive; but a. is the slope of the sectional-area

curve at X - 0, and hence 13 positive, and a + 2a + ... + na is the slope

of the sectional-area curve at x - 1; and hence Is negative. If [111 Is sat- A

sfied, the body" has a pointed tall and r. = 0, so that 112] is valid for both
cases.

The volume of the body may be expressed as 4

V".= j Y2dX = d21 y2dx,

or, substituting for y2 from Equatlon [21,

1 aa + ... +[ a C 113]

For convenience, the foregoing linear equations in the a 'S are

assembled here:.

a1 + a2 + ... + an 0 [4]1 2

a m + a m2 + ...+amn 1 [5)

n- 1"ax +*2a 2m + ... + nanm -i [61

a1  2ro  [10i

a1 + 2a2 + ... + nan  2r, (12]

1 1 C [131
2 1 + a + "" + I n 4 p

"., , SOLUTION OF EIQUATIONS FOR POLYNOMIALS OF SIXTH DEGREE

,Corresponding to the parameters mi re r,, and C there are the six

,_equations [4), [5., [6), [10], [17], and [1FO. Consequently a polynomial of

-ixth degree i.1, In general, determinable so that we choose n - 6 In these
equations. The solution of these equations by the determinant rule Is tedious a

and consequently an alternative procedure is developed.

The form of the solutlon by the determinant rule shows that the an'.

are linear functions of ro, r,1 and C . Hence y2 is also a linear function

of re, r,, and C and may be written In the form .
p

". . :,,V
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y2  2roRo(x) + 2r1R1(x) + C P(x) + Q(x) [i1]

where RO(X, 111(x), P(x), and Q(x) are poly~tomials of the sixth degree In x.

Corresponding to Equations j43, [5]', [6], fio], !121 and [131 the polynomial

y2(x) satisfies the following conditions Identically in ro, rif and Cp

(a) y2(0) _ 0

(b) a 92(0) 2r0
0l

dx(c) 9(1) =0o

(d) -7a y(1) --2r

(e) () m --4.

(f) y2 ( ) 0

and
(g) y2 (x)dx --C.

Since conditions (a) through (g) are satisfied identically in ro, r., aid C,.

their application to [141 has the followirg consequences:

Since y(O) = 0, regardless of the values of ro , r., and Cp, we mu't have

Ro(O) = Rj(O) = P(O) Q(o) - 0 [151

Similarly we obtain the following equations:

From Condition (b),

R1(0) - 1, A1 '(O) = P'(O) - Q'(0) W [6-

where the prime deno'es differentiation with respect to x. Prom Condition (c)

RO(1) M P(1) Q() - 0 [171

from Condition (d).

R1'() -I , PT) Q10 0[

- - - -~
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From Condition (e),
P(M) o. Q(m)si 1191

From*Condition U:).

11o'(a) R 1(m) - PIlM) - Q'(m) - 0 [20]

and .ox C6nditiort (g). V
*-- I

rP(x)dx -- , (Rox)dx - Rl Q(x)d x - 0 [211

The values of Ro(x), R IxW. P(x), and Q(x) will now be derived on the basis of

the relations In Equations [15] through [21]:

EVALUATION OP R (x)

Since Ro(0) - Ro(1) - Rol(1) R ,, Ro((m) R 0, and since R W

is a polynomial of tne sixth degree, it may be written factorially in the form S I
RX) (a + alx) x Ix-1)lx-) 2  [22]

o.."

0 0:~ 1

The coefficients ao and a1 may be ev'uated as follows: From Equation [16] ".

R '(0) = 1; whenco, from [22],.

a [231

Equation [22] may be rewritten as 
t

86W. - o[X - 2x'(1 + a) + x3 ( + 4m + m2 ) -2 x
2 (l + M) + M

2x] i

+a,[x' - 2x ' (1 + m) + x4(i + 4m + M2 ) -2mx ( + M) + M2X2]

Hence, froms. 121],

R (X)dx a + M)( + -1 + 4m + e2) 40.m + m) + m

+ M) + f2

+ , - j,, +) + -1(1 + 4m + M2 ) . ,, +.> 0.[I

3I.

. Yi.I 7
.. o-
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Then, simplifying, substituting a0 - and solving for a we obtain

a, 71 - km + 5 2) [241

2m2(2-7m + 7m2)

EVALUATION OF Ri(x)
Since R 1(0) =R11(O) = R10) = R~m) f R,'lm) 0 , and since RXx) .f"'

Is a polynomial of the sixth degree, it may be written factorially in -the form ,

R"(x) + .81 X) X2 (X _ 1)(X _ M} [251

The coefficients P and P are evaluattj as follows:

Prom [16], R '(1) -1; whence, from (251,

(po + pl)('1 -M)2 _1 -1261 ..%

Equation [25] may be rewritten as:

1,(X) = .8 [ 5- X'(1 + 2m) + xs(m + 2 m) .M2 ]

+ P1 [x' - x(1 + 2m) + x'(m + 2m) -_ xS] -.

But, from [21], R (x)dx - 0. Hence, Integrating the above expression for

Ea n ncx) and simpnlcyeng, gives )"

7P'o(2 - 6m + 5m2) + #(10 - 28m + 21' )  0 [271

Solving for [26) and [27] simultanLously, we obtain

10 - 28m + 21m
* "0° 2(1 - m)2 (2 - 7M + 7m2

) [28"

7(2 - 6m + 5mW ) [291

.... - m) 2 7

___ _•_-! .~-.*. "; . ,, - • , .
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EVALUATION OF Pix)

Since P(O) - P'(O) - P(i) - P'(1) = P(m) P'(m) - 0 and since PWi)

is a polynomial of the sixth degree, it say be written factorially In the form

PWi) - ?x (x - ')'(x - (301

To evaluate the coefficient 7, we have, from (21 ). P(x)dx -.. dence.

Px) Ix-- 2x5(1 + M) + x4 (1 + 4k + m2) - 2x 5 (m + m') + Wx'

and Integrating, we obtain

y +- j+ -m)++(1 + 4a+ at) m + +

or i3
: : " Y" 2(2- 7m + 7= 1311],,"I,

EVALUATION OF Qx)

Since Q(O) - Q'(0)'- Q(1) - Q'(10 -0 and Q(x) is a polynomial of the

sixth degree, it may be written in the form

Q(x) (60 + 61x + 62x2)x'(x - ) 132]

The undetermined coefficients are evaluated as follows: From [191, Q(m) - 4,
and hence

o + M6 1 2 4m2(l m)Z  []331

From [201, Q'(m) 0 0, and hence

( o + 6 M + 6 2) 2m(m - 1)(2m - 1) + (6, + 2m62) m2(M - 1)2 - 0

'", dividing by m(m - 1) and sImplifying, we obtain

*0 (4m -2) + 6 m(5m -3) +6 2 m
2 (6m 4 ) 0 [34]

I~
| - : . " 3
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